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On the Concept of Concentrated Loads and an Extension of the 

Uniqueness Theorem in the Linear Theory of Elasticity 

b7 

E. Sternberg and R. A. Eubanks 

Illinois Institute of Technology 
Chicago, Illinois 

1.  Introduction 

The traditional formulation of the second boundary-value problem of 

the lineai- theory of elasticity in the presence of concentrated surface 

loads, rests on the following properties required of the solution to such 

a problem: (a) it must satisfy the field equations of the theory through- 

out the region occupied by the medium; (b) it must conform to the boundary 

conditions for distributed surface tractions; (c) it must be regular^ with 

the exception of siii^alarities at the points of application of concentrated 

loads such that the resultant of thfa tractions on any surface surrounding 

a given load-point, and lying wholly in the body, tends to the correspond- 

ing prescribed concentrated load in the limit as the surface is contracted 

toward the load-point* 

Since the classical uniqueness theorem does not hold in the presence 

of singularities of the type under consideration, there is no assurance 
#     - , 
The results communicated in this paper were obtained in the course 

of an investigation conducted under Contract N7onr-32°06 with the Office 
of Naval Research. Department of the Navy, Washington 25, D. C. 

"internal concentrated loads are excluded for the time being. 

2 
If, in particular, the loading consists of concentrated forces only, 

the solution must clear the boundary from tractions. 

^The precise nature of these regularity requirements, which is ordi- 
narily not specified, will be considered later in detail. 

T 



that the foregoing formulation uniquely characterizes the solution to a 

concentrated-load problem. That this is not merely an idle concern has 

been shown previously. In [lj* were exhibited an infinite aggregate of 

distinct "solutions" corresponding to the half-space and the sphere under 

normal concentrated loads, each of which possesses the three properties 

cited. There is a priori no reason to give preference to any one member 

of this aggregate, and the question arises as to what precisely is meant 

by the solution of a problem involving concentrated surface loads. It is 

hardly feasible or desirable to base this decision on experimental evidence 

in each individual instance! nor can the question be dismissed by a refer- 

ence to the fictitious nature of concentrated loads:' the point is that 

the fiction is convenient, provided it is made meaningful. 

In order to supply an answer to the question just raised, one may 

uniquely define the solution to a problem involving concentrated loads 

as the limit of a sequence of solutions, corresponding to distributed 

loadings, which are covered by the classical uniqueness theorem. Speaking 

loosely, for the lime being, a unique characterization of the solution to 

such a problem is reached by considering the modified problem in which 

each of the concentrated loads is replaced with an arbitrary distribution 

of surface tractions over finite surface elements (load regions) sur- 

rounding the points of application of the concentrated forces. The so- 

lution to the original concentrated-load problem is then defined as the 

limit of the solution to the modified problem, as the surface elements are 

shrunk to the load points while the resultants of the distributed "replace- 

ment loadings" are made to approach the prescribed concentrated loads. 

Numbers in brackets refer to the bibliography at the end of this 
paper. 
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This limit process is spelled out precisely in Section 7, where ws 

prove that the limit-soiution so defined exists and is independent of the 

choice of the load regions as well as of the mode of distribution of the 

replacement loadings, provided these tractions on each load region are 

sufficiently smooth, parallel, and of the same sense. 

The preceding limit-definition, which is analogous to Kelvin's defini- 

tion through a limit process of the solution associated with a concentrated 

force applied at an internal point of a medium occupying the entire space, 

is natural on both theoretical and physical grounds. Although Boussinesq 

£3] based his solution for the half-space under concentrated loads to the 

traditional formulation of the problem, his results are in accord with the 

definition adopted here, as is readily verified with the aid of the appropri- 

7 
ate limit process applied, say, to Cerutti's solution for the half-space 

subjected to distributed tractions. The eorresponding limit process for 

the sphere under radial concentrated loads, was carried out in £l]» The 

usefulness of the limit-definition ultimately depends on, and is confirmed 

by, experimental evidence such as that supplied by Frocht and GueEnsey £uj 

in connection with the problem of the sphere under diametrically opposed 

concentrated loads. 

Intuitively, one would expect the limit-solution defined earlier to 

possess Properties (a), (b), and (c). That this is indeed the case is 

proved in Section 7, where an additional property of the limit-solution is 

gr^tablishedt (d) the order of the stress-singularities at each point of 

_2 
application of a concentrated load is r , where r is the distance from 

 F — '  
Actually, a considerably weaker, but physically less transparent, re- 

striction is found to be sufficient. 

See, for example, £2], art. 130. 

7„ See [2"},  art. 166. 



the load point. Also Condition (d) is intuitively plausible — at lsast 

if the boundary has a continuously turning tangent plane in a neighborhood 

of each load-pointj similarity considerations lend one to expect that the 

singularity at such a point has the order of the Boussinesq singularity, 

induced by a concentrated load applied to a plane boundary. 

We shall refer to "solutions" of conearrtrated-force problems -which 

meet Conditions (a), (b), (c), but fail to agree with the limit-definition, 
o 

as "pseudo-solutions".      The solution corresponding to a heavy sphere on 

a point-support, published in pQ, was identified as a pseudo-solution in 

("I]*    In the same paper other pseud.c=sclutions were constructed and their 

physical significance was examined.   All of the pseudo—3olutions discussed 

in £ll violate Requirement (d)»    It is, therefore, natural to enquire whether 

there exist pseudo-solution.? which also satisfy Condition (d).   According 

to a generalised uniqueness theorems proved in Section 8, this is not pos- 

sible, and the four properties cited represent a unique characterization 

of the limit-solution. 

The significance of this extension of the classical uniqueness 

theorem to concentrated loads, which is the main result of the present 

paper, may v>e described as followss 

(1)    The theorem yields an alternative unique formulation of concentrated- 

load problems in terms of Conditions (a),  (b),   (c),  (d) which is equivalent 

to, but far more convenient than, the limit-definition from which it derives 

its physical motivation.    In specific applications, the theorem obviates 

ihe existence of pseudo-solutions stems from the existence of so- 
lutions of the field equations, which are regular except for seif- 
equilibr^ted singularities at the boundary, and which clear the entire 
boundary from tractions. 

—r- 
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o 
the necessity for performing a limit procesa which is apt to be cumbersome, 

if not prohibitive. 

(2) Zn contrast to the limit-definition, the alternative definition 

through Hequlrements (a), (b), (o), (d), permits a study of the detailed 

•trusture of the singularities encountered in concentrated-force probless. 

These singularities require separate treatment if one is to arrive at practi- 

cally useful representations of the solution to such problems. Indeed, in 

order t o assure results i&ioh era amenable to a complete mwerlcal evalu- 

ation, it is essential to determine the relevant singularities in closed 

iorm, at least to the extent where the residual problem is governed by 

finite and continuous surface tractions. In £oj we employ Conditions (a), 

(b), (o), (d) to Investigate the naWs of the singularity at the point 

of application of a concentrated load acting perpendicular to a curved 

boundary* The boundary, in a neighborhood of the load point, is assuned 

to be repreaentable by a sufficiently smooth arbitrary surface of revolution 

•whose axis ooincides with the load-axis* We show there that the singularity 

is, in general* not identical with the known singularity appropriate to a 

load applied normri to a plane boundary; furthermore, we determine the 

Biipplementary eingularities needed to affect a reduction of the problem to 

one obeying the foregoing regularity requirements* 

(3) The uniqueness theorem of Section 8, and hence the alternative 

foraulaticn of concentrated force problems to vhieh it gives rise, applies 

to the ganeral anisotrepic medium in the presence of a positive definite 

Thus, ths exceedingly tedious limit computations performed in [Y|, 
turn out to be superfluous. 

Particular difficulties arise in the event a concentrated load is 
applied at a corner of the boundary (e.g., a load applied at the vertex of 
a cone). 

 j 
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elastic potential. On the other hand, the uniqueness of the limit-definition 

is established in Section 7 only for the lsotropic medium. 

Tho portion of the paper preceding Section 7 is, in a sense, prelimi- 

nary; though partly expository in character, it still contains results 

which are hoped *-o be new as well as, perhaps, a more rigorous and system- 

atic development of certain known results. 

Following a review in Section 2 of some geometric concepts needed 

throughout the remainder of th6 paper, we re-examine in Section 3 the pre- 

cise regularity limitations inherent in the classical reciprocal and unique- 

ness theorems. In this connection we introduce the notion of "regular 

states", which proves to be useful and economical in the subsequent analy- 

sis. Section h  is devoted to Kelvin's definition through a limit process 

of internal concentrated loads, and should supply some conceptual clarifi- 

cation of this subject. In particular, we construct here a counter-example 

to show that Kelvin's limit process does not yield a unique definition of 

internal concentrated loads in the absence of a restrictive requirement 

which appears to have gone unnoticed. 

The brief unified treatment in Section 5 of higher internal singulari- 

ties (e.g., 1orce-doublets and centers of rotation) permits some remarks 

which are intended to be clarifying; at the same time, this section is pre- 

paratory to the proof in Section 6 of the Lauricella-Volterra theorems con- 

cerning the representation of the solution to the second boundary-value 

problem in terms of the given surface tractions. The present reconsideration 

of these theorems might be justified on two grounds. First, a statement of 

An extension of this proof to anisotropic media would require the 
generalization for the anisotropic stress-strain law of Kelvin's solution 
to the problem presented by a concentrated force at a point of a medium 
occupying the entire space. 

:--,»— '•'  gafia»g;r:.r ': 
'•V'-'" 
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either theorem, sufficiently precise for our needs, is apparently not 

available elsewhere; second, the proof given by Lauricella £7] for the 

second theorem is different and probably less direct, while a satisfactory 

proof of the first theorem in the formulation employed here seems to be 

12 lackingo   The two theorems under consideration form the basis of the 

limit-treatment of concentrated surface loads, given in Section 7» 

12 r- -~, 
The sketch of a proof appearing in £2J is not safe from objections, 

as we shall have occasion to point out<, 

•""' r • 

-,'V- 



2.  Geometric Preliminaries 

For convenient future reference, we summarize at this place certain 

geometric notions which are needed repeatedly in the following develop- 

ments. Most of these concepts are used in the sense of Kellogg, and the 

corresponding definitions are quoted from QQ. 

A regular arc is a point set which, for some orientation of a cartesian 

coordinate system (x,, x?, x,), admits the representation, 

= f^), x^ = g(x.±),    a ^ ^ tf b, (2,1) 

where f(x-) and g(x,) are continuously differentiate in the interval 

(a,b). A regular curve is a point set consisting of a finite number of 

regular arcs arranged in order, and such that the terminal point of each 

arc (other than the last) is the initial point of the following arc. The 

arcs have no other points in common, except that the terminal point of the 

last arc may coincide with the initial point of the first, in which case 

the curve is a closed regular curve. 

A region (of space or of a surface) is a connected, not necessarily 
TO 

closed, J point set (in space or on a surface). A regular region of the 

plane is a bounded closed region whose boundary is a closed regular curve.. 

A regular surface element is a point set which, for some orientation of the 

coordinate system (x,, x_, x-), admits the representation, 

x^ = f(x1, x2), (xp x2) in R, (2.2) 

where    R   is a regular region of the  (x_, x?)-plane and   f(x_, x0)    is 

Hl/henever this is essential, the distinction between open and closed 
regions will be made explicit. 

8 

IS 
I 

r— ^,s-;-.    - 
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continuously differentiable in R. It follows  that the boundary of a 

regular surface element is a regular curve. 

A regular surface is a point set consisting of a finite number of 

regular surface elements, related a.s follows5 

(a) two of the regular surface elements may have in common either a 

single point, which is a vertex for both, or a single regular arc, which 

is an edge for both, but no other points; 

(b) three or more of the regular surface elements may have at most 

vertices in common; 

(c) any two of the regular surface elements are the first and the 

last of a chain, such that each has an edge in common with the next; and 

(d) all the regular surface elements having a vert-ex in common form 

a chain such that each has an edge, terminating in that vertex, in common 

with the next; the last may, or may not, have an edge in common with the 

first. 

The term edge here refers to one of the finite number of regular arcs 

of which the boundary of a regular surface element is composed, while a 

vertex is a point at which two edges meet. If all the edges of a regular 

sxtrface belong each to two of its surface elements, the surface is a closed 

regular surface (otherwise it is open)- 

15 
By a regular region of space we shall mean  a closed (not necessarily 

bounded) region whose boundary consists at most of a finite number of non- 

intersecting closed regular surfaces. Throughout what follows D + B will 

designate a regular region cf space with the boundary B (D being the 

lliSee [8^, p. 106. 

1*        . . 
''This definition is somewhat more general than that used, by Kellogg 

QQ, P» 1135 it is more convenient for our purposes. 

' i^!^"^.-•*:*•«;'*"  . '  " 



open region). We observe that the boundary of a regular region of space 

cannot extend to infinity; if D + B is not bounded, D contains all 

sufficiently distant points.   Clearly, B may have a uniquely defined 

tangent plane along its edges and at its vertices. On the other hand; any 

arc or point of B for which this is not true, is necessarily an edge or 

a vertex of Bj in order to avoid ambiguity, we shall refer to such arcs 

and points as singular edges and corners of B, respectively. Any point 

of B at which the tangent plane exists will be called a regular point of 

B. By a regular subregion of B we shall mean one which contains only 

regular points. 

10 

Thus, the hrii-space bounded by a plane or the region bounded by 
hyperboloid, are not regular regions of space. 



3.  Regular States* Limitations of the Classical Reciprocal and Unique- 

ness Theorems 

"With a view toward examining the precise circumstances under which the 

theorems of Betti and Kirchhoff holds it is expedient to introduce the notion 

of "regular states" in the sense of the following definitions. 

Definition 3.1; Let17 u^P), e..(P), and T^A?)    be a field of displace- 

ment , strain, and stress defined for r(jL.fx^txJ)    in D + B* Then the 

ordered array of functions of position  u,,u-,u_; e,,,e,?,...$ 7^^»7^p»•
a• 

is said to define a state S(P) in D + B. 

The state S may be regarded as a vector with 15 components in a 

function space of states and is a generalization of the concept of stress- 

state introduced by Prager and Synge Q9] for different purposes. Equality, 

addition, multiplication by a scalar, continuity, and differentiability of 

states, are defined as in ordinary vector analysis. Thus, if S and S* 

are states with the components u.s  e. ., f[.    and u.1, e.1., l\±i  respectively, 

while k is a scalar constant, S" = kS + S! is the state with the com- 

ponents ku. + u.', ke. . + eJ ., k^. + ^.. 
1     1     -»-J     -Lj     1«J     ^-J 

Definition 3,21 S(P) is a regular state in D + B, corresponding to the 

body-force field F.(P), if 

(a) S is continuous in D + B, u. is continuously differentiable 

in D + B, and e. ., Y..    are piecewise continuously diff erentiable in 

D + Bj 

l" 
'Throughout this paper Latin suffixes, unless otherwise specified, 

assume the values 1, 2, 3, and the usual summation convention for repeated 
V suffixes is employed. The coordinates x^ are rectangular cartesians, and 
lj differentiation with respect to a coordinate is indicated by a comma. 

If. 
11 

   i HIIIIWH •• mi iiim<nwi«ii—in—•IMIIIIIMH'"II'WHWIW"»"W> «m iiniimipm   -irimnnr^-iimt1! nwwi—iiyspBWBmig; 
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(b) S in D satisfies the equilibrium equations 

*1J,J = Fi' (3a) 

the stress-strain relations 

e-. = c. . jf__> (3.2) 

and the strain-displacement relations 

Ui,J + Uj,i = 2eidJ (3'3) 

(c)    in case   D   is not bounded, u. = 0(r    ), 7\. = 0(r    ), and 

j..   . s 0(r~~)    as    r -* oo, where   r    is the distance from the origin. 

It is assumed that the elastic constants in (3.2) satisfy the symmetry 

cijmn ~ cjimn ~ cijnm ~ cmnij» (3.u) 

and are such that the strain-energy density 

W=lcijmn^C (3.5) 

is positive-definite.    If, in particular, the medium is isotropic, the in- 

verted form of (3.2) becomes 

^ = *8iAk + 2Aei;}> (3.6) 

where    A     and   u.    are Lamp's constant and the sh-aar modulus, respectively, 

while   8..    denotes ths Kronecker delta.    In this case   S   will be referred 

to as an j gctropic regular state. 

If   y   la an oriented regular surface lying in   D + B (in particular 

"y   may be a subregion of the boundary   B), n. (Q)    is the outar unit-normal 

I 

m 

• 

IIUMWI miamiiwi.i      wmmwm-—•        •• ••imiinr ~'»~i "r —~  • m i   i       i* 
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of   V*   at a point    Q, and    S    is a state regular in   D + B, then the re- 

sultant surface traction   T.    of    S    on   JjT   at    Q, is given by 

T±(Q) = ^(Q)»j(Q)« (3.7) 

We note that T. is defined only at regular points of 5""« 

The proof of the reciprocal and uniqueness theorems in the linoar theory 

lfl 
of elasticity rests on the divergence theorem;  the validity of these 

theorems is thus restricted by the limitations underlying the divergence 

19 theorem which we cite  at this place* 

20 
Theorem 3.1: Let v be a vector field  continuous and piecewise continu- 

ously differentiable in D + B. If D is not bounded, let v = o(r ) 

as r -*- co. Then, 

I v . n dC= \    V • 
f P 
I " - « A~>-  i 7 . T d/, (3.8) 

B WD 

where   n   is the outer unit-normal of   B. 

The foregoing statement of the divergence theorem represents the 

strongest valid form which is relevant to our purposes.    Tfie theorem still 

holds if    v    is continuously differentiable merely in the interiors of a 

finite number of regular regions of which    D + B   is the sum, provided the 

volume integral in (3»6) is convergent.    This generalization, however, does 
 _  

In the proof of the uniqueness theorem for the Dirichlet problem, the 
use of the divergence theorem may be avoided and a stronger theorem i3 ob- 
tained with the aid of the maximum principle appropriate to harmonic functions 
(see [Jf}>  Exercise 2, p. 22U). The analogous maximum principle does not 
hold in elasticity theory. 

See £8], pp. 118, 217. The extension of Kellogg's proof to regions 
which are regular in our sense, is trivial. 

20 
" Letters carrying bars denote vectors. The symbols "•« and "x" desig- 

nate scalar and vector multiplication of two vectors, respectively. Unless 
otherwise specified, the scalar components of a vector v are v..  ^ is 
the usual del-operator. 

• ———i^^*^^,^'->*"«IHWia 
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not result in a physically significant strengthening of the theorems of 

Betti and of Kirchhoff. An examination of the proofs of these theorems 

in the light of Theorem 3.1, with the aid of Definition 3.2, yields the 

following statements. 

••• 

i 

Theorem 3,2: Let S and S1 be (not necessarily isotropic) regular 

states in D + B, corresponding to the body force fields F and F', 

respectively.    Then, 

t f • u» do- + \   F • u3 d/ = 

E WD 

f±f 

T'   . u dcr -s-  |    F'  • u d/ 

B "D 

flaV* 
»•  (3.9) 

If, in Theorem 3*2,  in particular, v/e take    S = S», we reach the 

energy formula 

I f • u do~ + ['•*«-[ W d/, (3.10) 

where   W   is the strain-energy density given in (3-5).    Equation (3»10) 

forms the basis for the proof of the subsequent uniqueness theorem. 

Theorem 3»3t    Let    S1    and   S"   be (not necessarily isotropic) regular 

3tates in    D + B,  corresponding to the same body-force field.    Let    B , 

B.     be subregions of    B    such that    B    + B   = B, u1 = u"    on    B , and 

f' = fn    at all regular points of    B .    Then   T'.1., = ^V.    in    D + B. 

The proofs of Theorems 3*2 and 3.3 available in the lit«r?ture     rest 

on the assumption of a bounded region and are limited to the isotropic 

stress-strain relations (3.6).    The adaptation of these proofs to the more 

general hypotheses employed here is, however, immediate.    Equally trivial 

txSee, for example, ]jQ» p. 173 and p. 170. 

•^pt^^^^^^y~ *••*- *'^r^^^^g^ 
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is the extension of Theorem 3.3 to mixed-mixed boundary-value problems (e.g., 

normal component of the displacement vector and tangential component of the 

surface traction prescribed). Furthermore, the divergence theorem, and 

hence the two last theorems cited, remain valid if B extends to infinity 

22 
(D + B is then no longer regular),  provided B is sufficiently smooth. 

We emphasize that the regularity requirements at infinity stipulated 

in Part (c) of Definition 3»2, though sufficient, are by no means necessary 

for the truth of the uniqueness theorem. Indeed, these conditions are arti- 

ficial in character since the prescription of a definite rate of vanishing 

of displacements and stresses at infinity cannot, in general, be justified 

on physical grounds. The extent to -?*>ich the conditions at infinity can 

be weakened, and thus made physically plausible, is still in need of investi- 

23 gation. "*    In case B extends to infinity, the mere requirement that the 

stresses vanish at infinity is evidently not sufficient for uniqueness. 

This is apparent from a paper by Neuber [[llj* containing a non-vanishing 

solution of the field equations for vanishing body forces, which is regular 

in a region bounded by a hyperboloid of revolution, clears the entire boun- 

dary from tractions, and possesses vanishing stresses at infinity. 

We speak of a "unique formulation" of a particular boundary-value 

problem-if, assuming the existence of a solution to the problem, the 

solution is unique. On the basi3 of Theorem 3-3,  and with reference 

to the notation used in the statement of this theorem, the subsequent 

22 
See Footnote No. 16. 

'Tiffen [JLO^ considered the analogous issue with regard to the two- 
dimensional treatment of the plans problem. The authors are indebted to 

, Dr. B. Budiansky of the NACA for calling their attention to an example 
which contradicts the theorem stated in the Summary of Tiffen's paper. 

BM^jjagggwgj^-jiiwi-Mi.ii' mmmmm m win— nm ••'••••Ma^jigggaaa^jg^'?i.i!"|jj?4'*'g?y'      >*«s**6**- 



16 

formulation of the mixed problem in the linear theory of elasticity^ is 

unique: 

Given F#(P) for P in D, U#(Q) for Q on B , \(Q)    for Q on 

B+, as well as the elastic constants c. . , find a state S(P) which is 

regular for P in D + B, corresponding to P = P#, such that u = u# on 

B  and T = T# at all regular points of B . 

It should be noted that the preceding statement of the problem rules 

out non-vanishing tractions at infinity? this case, however, is reducible 

to the case of vanishing tractions at infinity by means of the principle 

of superposition. 

Theorem 3»Ut The following conditions are necessary for the existence of 

a solution to the mixed boundary-value problem in the foregoing formulation; 

(a) *LAQ) must be continuous on B.. and continuously differentiable 

in any closed regular subregion of B : 

(b) TJXQ) must be continuous and piecewise continuously differenti- 

able in any closed regular subregion of B. j 

(c) F«.(P) must be piecewise continuous in D + B and, if D is 

not bounded, f   = 0(r"J) as r —^00; 

(d) If D is bounded and B = B., then £  and T„ must satisfy 

the equilibrium conditions 

P 
der= 0. i P^ d/+ I \ do- = 0,    lrxf#d/+lrx!# 

JD ^B ^D VB 

Theorem 3• I4 is a direct consequence of Definition 3.2. The list of 

necessary conditions given in this theorem could easily be augmented. In- 

deed, any boundary conditions which cannot be assumed by a state S which 

is regular in D + B (e.g., violate the symmetry of the stress tensor), 

are inadmissible. The determination of a set of conditions sufficient for 

•uwniwwn'lmipw" " '' • l"111 l|MWW""".l"!,Sll'By' !1"*!E!?I?,'IW" "".' 



17 

the existence cf a solution to the problem under consideration is beyond 

the scope of the present paper, which is primarily concerned with the 

uniqueness of solutions whose existence is postulated* Suffice it to say 

that the available existence theorems assume a degree of smoothness of 

the boundary -which is not necessarily possessed by the boundary of a regu- 

lar region of space. 

Our main objective in stating Theorem 3.U is to draw attention to the 

fs<rb that the class of boundary conditions covered by the classical unique- 

ness theorem is far more limited than appears to be generally recognized. 

In particular, not only concentrated loads, but even most instances of 

discontinuous distributed loadings are outside the domain of validity of 

the traditional uniqueness theorem., It is not difficult to demonstrate 

the incompleteness of the customary formulation of problems involving such 

distributed loadings, which says nothing regarding the regularity of the 

solution at the boundary and in no way specifies the nature of the singu- 

larities there encountered. To illustrate this observation, we refer to 

the -well known plane-strain .solution for the half-plane under a uniformly 

distributed shear load applied to a finite segment of the boundary. 

Superposition upon this solution of the traditional solution for a concen- 

2f> 
trated tangential load,  applied at an endpoint of the load segment, yields 

an entirely different stress distribution which nevertheless still conforms 

to the usual formulation of the original problem. Moreover, the new "so- 

lution", as well as the traditionally accepted one, exhibit infinite stresses 

at the endpoints of the load segment. 

See, for example, [12^, p. 129. 

2*See ^12], p. 88. 

--... iii.«ji_,H»»,,aiiii-—. '«iiiwmu»" ii      ——mm    i  LIM—B—iCWWF'^y^l.L!,"*"" ^"'"•"•""'•—"'• 'lllWWM.,1.. SIBWWMWJB* 
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Although a detailed study of the uniqueness of solutions to problems 

characterized by singular distributed loadings is beyond our present in- 

tentions) we shall briefly return to this subject at the end of the paper. 

We now turn to the concept of concentrated loads which is our main concern* 

•i ^M—»»—»«<ww«»Mnw«fflHTifc<Mil miiwn niriiiiiiiwmtw I W MIWI IIIW,»I OMMIKM* | B •' ,..,.,,    .... 



U.  Singular States. Internal Concentrated Loads 

Definition lulg S(P) is a singular state in D + B if it is not regular 

in the sense of Definition 3»2. 

Definition U.2t Let Q. (oi= 1, 2, ...N) be a set of discrete points in 

D + B. A state 5(F) is regular in D + B except for point singularities 

at Q  if it is singular in D + B but regular in every closed regular 

subregion of D + B which does not contain the points Q . 

If a Q  lies in D, we shall speak of an internal point-singularity 

of Sj if a Q  lies on B, we shall refer to a surface point-singularity. 

The analogous definitions of states regular except for singularities along 

a surface lying in D or along an arc on B would enter naturally into 

the study of uniqueness questions in the presence of dislocations  and 

discontinuous distributed surface tractions. 

For future convenience we recall at this place the Boussinesq-Papkovich 

solution of the field equations for the isotropic medium in terms of four 

27 
scalar stress functions. 

Theorem U.l: Let 0(P) and V(P) be a scalar and a vector field which 

are three times continuously differentiable for P in an arbitrary open 

region D. Let 

2/Zu = V(0 + r  • V) - U(l - >>)V, (U.l) 

in D, where r i£ the position rector (x-, x?, x ) of P, while U, 

 -g _ —.  
See £2li p. 225, second paragraph. 

•See \_S\t  PP. 63 and 72, as well as \}S\-    The solution was redis- 
covered later by Neuber p-UJ. The extension of this solution to the case 
of non-vanishing body forces considered here, is due to Mindlin £L5~}. 

1* 
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and   f)    are the shear modulus and Poisson's ratio, respectively*    Then the 

stresses associated with the displacement field    u   in the sense of the 

displacement-,5train relations (3.3) and the 1 so tropic stress-strain relations 

(3.6), satisfy the equilibrium equations (3*1) for the body-force field 

F(P). 

The truth of the theorem is confirmed by direct substitution. An ele- 

gant proof of the completeness of the foregoing solution of the field 

equations was given by Mindlin Q-6]]* first for the case f = 0, and was 

later extended by him to include body forces in £L5]» 

Our next objective is the definition through a limit process of the 

concept of internal concentrated loads. By virtue of the principle of 

superposition, it is sufficient here to consider th9 Kelvin problem pre- 

sented by a concentrated load applied at a point of a medium occupying 

the entire space. A physically natural unique definition of the solution 

to this problem for an isotroplc medium is supplied by the following theorem. 

Theorem U.2: Let D be the entire space and 0 be the origin. Let 

D + B  be a sequence of bounded regular regions of space such that each 

D  contains 0, and d —* 0 as n —*» co, where d  is_ the maximum 

diameter of D_ + B . Let F (P) be a sequence of body-force fields with 

the properties; 

(a) f (P) is twice contir^usly differentiable for P in H; 

(b) P (P) = 0 for P in D and not in D + B j 

J>. (c) dr L as n -•» co; 

The precise limitations regarding the nature of the region and the 
regularity requirements at infinity inherent in Mindlin's proof, are in 
need of clarification. 

~*K A.'-"** A rrrw*'**"* • ".M-*»wnMft 
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5 lf»! (d) \ f F_ I df' remains bounded as n -+•   r. 

Then there exists a unique sequence of isotropic states S (P), regular in 

D and corresponding to F (P) • The sequence S (P) , for all P j4 0, con- 

verges toward a limit state S(P) which is independent of the particular 

choice of the sequences D + B  and ?_(P). Moreover, S(P) is generated 

by the stress functions, 

L 
0(F) = 0, V(P) = - 3^^, 

•where    r    is the distance of   P   from the origin   0» 

(U.3) 

Definition U*3?    The limit-state   S    of Theorem U.2 ("Kelvin-state") is 

said to be the sta*.e corresponding to a concentrated force   t   applied at 

the origin to an isotropic medium occupying the entire space* 

Proceeding to the proof of Theorem U.2, we observe that the Newtonian 

potentials 

0 (p) = ofc I   2  d/, 
n     JL   R(P,Q) 

n 

where 

f  *n(Q) V P) = - at, \     -2— df 
1 H(P,Q) 
«*>_ 

afc= 1/8^(1-v*), 

X (WO 

m 

r(Q) is the position vector of a point Q of D , and R(P,Q) is the 

distance from Q to a point P of D, satisfy the Poisson equations (Uo2) 

for f = F  throughout D- Furthermore, it follows from Hypotheses (a), 

(b), as well as from the properties of Newtonian potentials, that the se- 

quence of states S (P), generated bv the stress functions 0  and V 

CPf»v»riM'*.ll»MUPru vmrmu * m  m    .. 
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in the sense of Theorem lul, is regular in D corresponding to the body- 

force field f , in accordance with Definition 3.2. Thus S (P) exists 

and, in view of Theorem 3«3> is unique. 

In order to confirm that S (P) -» S(P), it suffices to show that 

? (P) -»»7(P), and that the first and second partial derivatives of 0_(F), n n' 

v1 (P) tend to the corresponding derivatives of 0(P), V(P) for all 

P ^ 0. Since the argument in each instance is strictly analogous, we 

merely prove that 7 (P) -*>V(P). To this end, note from (h.3) and (U.U) 

that 

|vn(P) - V(P)| ^ c6 \  ?n(Q) [R
-1
(P,Q) - r-1(P)] d^ 

^n 

.-l(P)[f fn (Q) d/- I 
<U.5> 

whence, holding P/0 fixed, and for all n sufficiently large to injure 

that P is not in D + B . n   n' 

| fa(P) - 7(P) | * o> f |Pn(Q) | ^(P, Q) - r-X(P) | df 

n 

+ o6r_1(P) fn(Q) dt-T. 

n 

U.6) 

By Hypothesis (c), the second term in the right member of (U.6) tends to 

zero as n -*- coj the first term, on the other hand, is bounded by 

o6  max 
Q in D + B„ n   n 

R'^PjQ) - r-1(P) I f  (Q) *, CU.7) 

n 

which approaches zero by Hypothesis (d) and since d -*»0. This completes 

the proof. 

^t 
KgaiUllftji—liii   i     •••• •i^a»»*»^ 

m 
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Tho Kelvin-state S, generated by the stress functions given in (U.3)» 

•was first presented by Kelvin without derivation in Ql7^> and l»ter de- 

duced by a limit process in Ql83> P« 277$  on the basis of a sequence of 

concentric spheres for D , and on the assumption of body forces which are 

constant within D. The present derivation, with the aid of the 

Boussinesq-Fapkovich stress functions, is analogous to that employed by 

Mindlin £15^ 1° connection with the problem of the half-space under a con- 

centrated internal load. 

Love's exposition £2j, art. 130, of the Kelvin limit process, which 

no longer restricts the shape of D  and the body-force distribution 

within D , is nevertheless open to minor objections and suffers from a 

certain conceptual vagueness, fhile the use of a sequence (or family) 

of regions D  contracting toward 0, is clearly implied, it does not 

become fully evident that the argument involves an associated sequence 

(or family) of solutions of the field equations. Moreover, it is essential 

I to make suitable smoothness requirements, such as our Hypothesis (a), 
• 

regarding the body-force distributions F* (P), if the uniqueness of the 

approximating states S(P) is to be assured. Finally, lack of explicit 

detail in carrying out the limit process leads Love to overlook the need 

for a restriction on F (P) such as our Hypothesis (d)• 

Hypothesis (d) could easily be relaxed somewhat, although this would 

seem to serve no particular purpose; it is implied by Hypothesis (c) in 

the special case in which the body forces F (P) are parallel and of the 

same sense within D . We now show by means of a counterexample that 

Theorem U>2 ii Talse, and thus that the Kelvin limit-process does not yield 

a unique definition of internal concentrated loads, in the absence of 

Hypothesis (d). 

--- ii i ii ii i mmi>-mmmmafsamma&£!0&'^Z!?Zm^??''m'n''"mmB"''m**m'mr^'mammm ••*»'—in iinnm -?"»w 
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Theorem U.3? Theorem U.2 is false if Hypothesis (d) is omitted. 

To demonstrate this, it is sufficient to exhibit sequences C  and 

f  (P), conforming to all hypotheses of Theorem U.2, except Hypothesis (d), 

such that lim  S (P) £ S(P) for P ^ 0, where S(P) is the Xelvin-state. 
n -*» co 

Let T  be the sequence of concentric spheres 

0 = r < l/n  (n = 1, 2, ...), CU.8) 

and let   F (P)    be defined by 

Pn(P) =-f.fn(r)    for   0 =* r * 1/n, 

Pn(P) = 0 for r =• 1/n, 
V (U.9) 

where, 

fn(r) . - 2S a -   V)n9(r - |f (6r2 ^r+i). 
p n 

(u.io) 

Direct computation confirms that 

f'(0) = f»(0) = f (1/n) = f«(1/n) = f"(l/n) = 0, n nr nr '   '        n n ' CU.li) 29 

whence   F (P)   meets the smoothness-hypothesis (a) of Theorem U.2.    In view 

of the polar symmetry of   f     about    0, clearly, 

Fn dY = 0 (n = 1, 2,   ...), (U.12) 

so that   1 = 0. 
n 

The stress-functions   0n(P)    and   V_(P)> generating the sequence of 

states    S (P), which correspond to the body-force distributions   F (P)    and 

are regular throughout    D, now again follow from (U.U), with    P  (P)    defined 

29 The primes denote differentiation with respect to r. 

 r 
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as in (U.9),  (U.10).    Consider a fixed    P ^ 0    and choose    n >  r(P).   Then 

0 (P), as well as the components of   7 (P), for every such fixed   n, are 

the Newtonian potentials at a point of free-space of mass distributions over 

the sphere   D, whose densities have polar symmetry about the center   0. 

According to an elementary result iii potential theory, the value of such a 

potential at   P    equals the value there of the potential associated with a 

single particle at   0, whose mass is equal to the total mass of the distri- 

bution.    Hence, and by virtue of (U«U),  (U.9), we have 

0n(P) = ^Jrfn (r) d/, 

n 

On the other hand,  (U.10) is found to impljr 

(r) df = 1, 

>  (U.13) 

oc i"n< (U.iU) 

and (U.13), (U.lU), together with (U.12), yield 

0n(P) = Vr,  Vn(P) = 0    (n = 1, 2, ...). (U.lS) 

The sequence   S , therefore, tends toward a limit state    S   which is gener- 

ated by the stress-functions 

0(P) = 1/r,     V(P) = 0. (U.16) 

According to (U.l) and (U.16), the displacement field belonging to S is 

given by 

The polynomial (U.10) was actually constructed to meet conditions 
(lull), (U.lU). 

rsas?. I^W-JUMPT^^^.*^-- ' 



u(P) = V l/r, (1».17) 

31 and is thus identified as appropriate to a center of compression"^ at 0. 

If the conclusions of Theorem U.2 were valid here, S should tend to the 

null-state, since E = 0. Indeed, 

a f n df — CO 

for the sequence of body-force fields (U»9)>  (U.10), which thus violate 

Hypothesis (d) of Theorem U.2.   The proof of Theorem 1*.3 is now complete 

and we turn to a discussion of certain properties of the Kelvin-state. 

Theorem h»hi    The Kelvin-state   S   of Definition U»3 has the propertiest 

(a) S   is regular, corresponding to zero body forces^ in the entire 

space   D, except for a point-singularity at the origin   0; 

(b) Let -O.   be any closed regular surface surrounding   0    and let 

f   be the resultant surface traction of   S    on that side of  XL   which is 

oriented toward    0.    Then, 

f 
4a. 

f do-= L*j CU.18) 

(c) 7i* = 0(r 
•* v 

-2 ) as r -*• 0. 

26 

Property (a) follows from Theorem U.l> since the stress functions (lw3) 

are harmonic in D except at 0, and from the observation that u. and 

-1      -2 
f. . belonging to S, vanish at infinity as r   and r , respectively. 

Properties (c) and (b) are established by inspection of, and an elementary 

computation based upon, the stresses of S. A trivial limit process confirms 

that (a) and (c) imply 

^See £2^, p. 187, and Definition £.2 of this paper. 

1 uijr*rmu*t^**9 t • • mi ;-s?r 
-•-••' 
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ft; 

t (d)   r x f da- = 0. (U.19) 

Thus, the tractions of S on Xi are statically equivalent to the single 

force I at 0. 

Kelvin's realization that the definition of internal concentrated 

loads necessitates a limit process, was apparently neglected in the sub- 

sequent treatise literature, with the exception of Love £2]]. Thus, for 

example, in £12]], art. 120, Kelvin's problem in formulated in terms of 

Properties (a), (b), and (d). To see that this formulation is not unique, 

consider the state 

S» = S + cS#, (U.20) 

where S is the Kelvin-state, S* is the state appropriate to a center of 

compression at 0, whose displacement field is given by (U.17), and c is 

an arbitrary real constant. S' is  readily found to possess Properties (a), 

(b), (d), and might be called a "pseudo-solution1' of Kelvin's problem. 

In ri9], art. 32, and £20^, art. 350, the problem of Kelvin is approached 

on the basis of Properties (a), (b), (c), and Property (c) is claimed to be 

a consequence of (b) „ This claim is not justified as is again apparent from 

S' which possesses Property (b) without conforming to (c). The question 

remains, however, whether Properties (a), (b), (c) of Theorem h.U uniquely 

characterize the Kelvin-state, and thus yield a legitimate formulation of 

Kelvin's problem, An affirmative answer to this question will be supplied 

by the uniqueness theorem provod in Section 7 of this paper. 

ec^w ' i —i «n im II,. g, e«g '^_; 



I 
5.      Higher Internal Point-Singularities 

Theorem 5>»1»    Let the stress-functions   0   and   V   of Theorem U.l be har- 

monic in an arbitrary open region   D   and there generate a state   S.    Then 

the state   S. = S .    is generated by 

h ' *,i + \> \ = V V-1* 

and in   D    satisfies the isotropic field equations for vanishing body forces. 

This theorem follows at once from Theorem U.l and by inspection of Equations 

(3.1), (3.3),  (3.6). 

Through successive differentiations of the Kelvin-state    S(P)    with 

respect to the coordinates   x.    of    P, one obtains an infinite aggregate 

of states which are regular in the entire space   D, except for progressively 

stronger point-singularities at   0.    In this section we deal briefly with 

those singular states which result from a single space-differentiation of 
•JO 

S(P) and are needed later. 

Let S±(P,Q) = Si(x1, x2, x j g,, £g, k)    be the Kelvin-state 

corresponding to a unit concentrated load applied at Q( £_, £_, £ ) in 

the x.-direction and, for brevity, write S.(P) S S.(x_, x_, x_) in 

place of S.(P,0). We now define a set of nine states S. .(P) by means of 

The physical interpretation of the states S. ., in terms of the Kelvin- 

states S., is apparent from the observation that 

what fOIIONS is a unified treatment of material discussed in Tj£\9 

art. 132. 

28 
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where 8. . again designates the Kronecker delta. 

Definition 5 .It The state S .(P), for i = j, is said to correspond to a 

force-doublet, applied at 0 parallel to the x.-axis» The state S. ,, 

for i ^ J, is said to correspond to a force-doublet with momsnt about the 

x.-axis_ (k 3^ i, j), applied at 0 parallel to the x.-axLs 3U 

We now record the Boussinesq-Papkovich stress functions, as well as 

the displacement fields, belonging to representative members of the set of 

states S, and S. ,. 
iJ 

For S : 0X = 0,   \ ~ - ct-Fi, o, 0], 

*  ? + "f —T> —T   > L  r    r-'  r3 r3 J 

ci.= 1/8 7^(1 - ^)» 

(5.U) 

For S, , : 'u = -p 'n = *0. 0, 0], 

J-3X3  (1 - U;>)x. 3x?x  x  3x,x, x_-i 
H5-5) 

33 A "double force without moment", in the terminology of Love [~2~1« 

3\ote that S. . ^ + S... 
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I 

For S12* 012 = 0,  V12 = *U|, 0, ol 

V*«i2- = - at 

2 P • 
3x£x2 (3-U>))x2 3xxx2 x1 3x1x2x. 

T  3J 

> (5.6) 

Equations (5oli), (5<>5)s (5<>6) are obtained from (lu3) with the aid of 

Theorems 5.1, U.l. The associated fields of stress follow from (3«3)* (3.6)* 

and may be omitted here. On the basis of the stress fields belonging to 

(5.5)* (5.6), and with the aid of (5«2), (5.ii), and Theorem 5.1* we arrive 

at the following theorem which is analogous to Theorem U.b. 

Theorem 5.2 s The states S. ,, defined by (5.2)* have the properties; 

(a) S. . is regular, corresponding to zero body forces* in the en- 

tire space D* except for a point-singularity at the origin 0. 

(b) Let SL   be any closed regular surface surrounding 0 and let 

T.. be the resultant surface traction of S. . on that side of .G- which XJ _—— J_J —=  

is oriented toward    0=    Then, 

J f. . do-= 0, (5.7) 

For    i = j JJ 

I )SL 
while for    i / j    and    k ^ i, j* 

r x !. . d<r  = 0, 
13 

(5.8) 

k rxT. . d<r  = €a, , xj k* (5.9) 

where a.  is a unit-vector in the x.-direction, €. -  1 if (i,j,k) is 

a cyclic permutation of (1*2*3)* and €. = - 1 otherwise. 

<c> -^mn = °<r~3> SS.   r-- (5.10)35 

35 The last. +wo suffixes refer to the components of the stress tensor 
belonging to S... 

im. i  r 



In contrast to Properties (a), (b), (c) of Theorem koh,  which will be shown 

in Section 8 to characterize the Kelvin-state uniquely, Properties (a), (b), 

(c) of Theorem 5.2 clearly do not supply a unique characterization of the 

states S. .. 

Theorems U.U, 5.2 suggest a remark concerning Saint-Venant•s principle. 

The stresses of the Kelvin-state, whose tractions on any surface XL. sur- 

-2 rounding 0 are statically equivalent to a force, decay as r   at in- 

finity- On the other hand, the stresses of a force-doublet state, whose 

—3 tractions on _Q_ are self-equilibrated, decay as r . This comparison 

has traditionally been cited^ in support of Saint-Vgnant's principle as 

formulated by Boussinesq ^3]]» It should be observed, however, that the 

stresses appropriate to a force-doublet with moment, whose tractions on Sl- 

ave  statically equivalent to a couple and thus are not self-equilibrated, 

also vanish as r   at infinity. Hence, the condition of self-equilibrance 

of the tractions on SL   doe? not yield a reduction in the order of vanish- 

ing of the stresses at infinity as compared to the case in which merely the 

resultant force on Si   is zero. This observation contradicts rather than 

supports Boussinesq's version of Saint-Venant's principle; it is consistent, 

however, with the modified version of the principle announced by von Mises 

Q21~| and proved in £22]. 

Definition 5.2t The state S* = S.. is said to correspond to a center of 

compression at 0. The state S* •= — (S. . - S .), where (i,j,k) is^ a 

cyclic permutation of (1,2,3)> is said to correspond to a center of rotation 

at 0 parallel to the x. -axis. 

36See [3] and [2], art. 133. 
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If 

The stress functions and displacements for S* and S  follow from (5.5) 

and (5.6). 

For S':     0* = 2(1 - 2J>) ?,      V* = 0 r 

/U.V  = (1 - 2j>)  <*,V\. 

For S3:     03 = 0, V3 = %[- JL  (i), 3 (1), o] 

Theorem 5.2 now yields the properties, 

V do-= 0,   l   ? x f* do-= 0,   /T   = 0(r~3)    as    r 

« Ja 
r p 
I   Tkda=0,   \   rxfkd<r=ak,7f1 = 0(r"3)    as    r 

" (5.H)37 

-*o, 

0. 

(5.12) 

(5.13) 

J'Note that    0°    and    \r    are equivalent to   0..     and    V..,  as computed 
from {5.5),  in the sense that they generate u* ii 11* 

. ___.,_   .. 



6«  The Theorems of Lauricella and Volterra 

We proceed to state, and indicate the proof of, two lemmas which are 

prerequisites for the proof of the two theorems to be considered in this 

section. These theorems, in turn, form the basis of the limit-definition 

of concentrated surface loads. 

Lemma 6.It Let S(Q) be a state regular in a neighborhood of a point P. 

Let S•(Q) be regular in the same neighborhood. except for a singularity 

at P. Moreover, let 

u^(Q) = 0(r_1) and f^CQ) = 0(r~2) as r-** 0,   (6.1) 

where   r    is the distance from   P    to   Q, and let 
n 

lim 
S-*0   J 

f» do-= I, (6.2) 

Til) 
^TX6) being a sphere of radius 6 centered at P, whose outer normal is 

directed toward P. Then, 

lim      ¥ • u« do-= 0, lim  j   T'». u da = I * u(P). (6.3) 
8 -* ° <*£(&) 8 •*" ° ^X^) 
The first of  (6*3) is inraediate from the first of  (6.1).    To estab- 

lish the second of  (6.3)» observe that 

f *  • u do- - I • u(P) 

j£(8) E<*> 

u(P) • [ 

f'(Q)  • [u(Q)-u(P)l d<r 

> (6. h) 

t"'(Q) d<r- E~| 

«£<8) J 

The second term of the right member of (6.U) tends to zero with S by 

(6.2); the first term approaches zero as o -*• 0 by virtue of the second 

of (6.1) and in view of the continuity of U(Q) at P. 

33 
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Lemma 6.2: Let S(Q) bB a state regular in a neighborhood of a poi.nt P. 

k 38 
Let S (Q) be the state corresponding to a center of rotation  at P, 

parallel to the x.-axis* Then, 

* • uk d<r= 0- lim  I   T* • u dcr = 4>k(P),   (6.5) 

£(8) 8 "* ° ^Z(S) 
where y(S) is defined as in Lemma 6.1 and a) = -K V x u is the rotation 

vector belonging to u. 

Consider k = 3 as a typical case, take P as the origin, and let Q 

have the coordinates x,. To prove the first of (6.5)> we note that an 

elementary computation, based on (5.12) and (3*7)$  yields, 

I z<&> >  (6.6) 

The right member of (6.6) may be written as a sum of integrals of the form 

i(8)- /(Q) f(Q) d<r, (6.7) 

E<*> 
where, 

f(Q) dc = 0,  f(Q) = 0(S~2) as 8 —0, 

*£$) 
/(Q) = TtP) + g(Q), g(Q) -*• 0 as Q -•> P, 

(6.8) 

whence I(b') -^ 0 as 8 -•-0. 

"ft'e turn to the proof of the second of (6.5). With the aid of the 

stresses associated with (5.12), we find that 

38 See Definition 5.2. 
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^•^i^ (^Ug •• Xgt^) d<r. (6.9) 
Uj-(8) orro   ^(S) 

A Taylor expansion of    u.(Q)    about    P   gives, 

1 1 

with Ziyti "*• ° as Q "*" p* 

J" (6.10) 

J 
Substitution of (6.10) into (6,9) confirms the desired result after a short 

computation. 

The tractions of the singular state S1 in Lemma 6.1, on any surface 

-O. surrounding P and lying wholly in the neighborhood under consideration, 

are statically equivalent to a single force I applied at P. The tractions 

of is  in Lemma 6.2, on any such SL,  are statically equivalent to a couple 

of moment a. , where a.  is a unit vector parallel to the x-axis. The 

work done in an "infinitesimalw displacement of a rigid body by a force 

system which is statically equivalent to a single force E at P together 

with a couple of moment fi, is given by 

U = L • u(P) + fl . 53, (6.11) 

in which u(F) and US    are the displacement vector of r arid the rotation 

vector, respectively. One might suppose that the second of (6.3) and (6.5) 

follow trivially from (6,11)j in fact, this is suggested by Love £2J on 

pp. 236 and 2h5*    Such an intuitive argument, however, is not sound, as can 

be seen from the following observation. Let S be defined as in Lemma 6=1, 

and let S* be the state corresponding to a center of compression at P, 

given in (;?«11). Here, 
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JZolzto* •!*'"-§^^<«' (6.12) 

although, according to (5*13)* the singularity of 8° at P is self- 

equilibrated. 

W* turn to the statement and proof of two theorems regarding an inte- 

gral representation of the solution to tha -scond boundary-value problem in 

terms of the given surface tractions. These theorems^ were given in dif- 

ferent form by Lauricella [[23], and were attributed by him to 7. Volterra. 

Theorem 6.1: Let s(Q) ba an isotroplc state, corresponding to the body 

force f(Q), which is regular in D • B and such that 5(F) * 23(0 * °» 

where P  is a point of D. Let P be a point of D and SJ(Q,P,P ) be 

a state characterised by the properties» 

(a) Sj[(Q,P,P0) = Si(Q,P) ••sJ(Q,P,»0) • SJ(Q,P,P0),        (6.13) 

where   S. (Q,P)    is the Kelvin-state corresponding to a unit force at-   P   in 

the   x. -direction» 

S^(Q>P,P0) - - 3i(o,p0) * y   At-(p»p0> sJ(Q*p0>* xlt 

> (6.1U) 

with        A1;J(P>?0) = 5 x a± • a^, 

3^(Q,P)    is the state corresponding to a center of rotation at   P     parallel 

to the   x,~directioft, 8   is the vector from   P   to   P , and   I4    is a unit 

vector parallel to the   x.-axis• 

(b)    S.(Q,F,P)    corresponds to   F(Q) » 0   and is an isotropic regular 

stats for    Q   in   D + B; 

39 See [23, art. 169, and [19],   p. 122. 

nSi**3ii»aS<«..- I •:."-  ...-• •-    .. ^_ *<WHBHi :..'.ci: .? 
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(c) *j(Q,P,Fe) « f^Q,?) + ^(Q*P»P0) + ^(Q?P,P0) = 0,     (6.150 

in which T», f,, T", tT are the surface tractions wi B of SJ, S., S , 

S., respectively; 

(d) ^(PO,P,PO) = 55J(PO,P,PO) = 0. 

Then , 

r. 
u±(P) = \ f(Q) • uj(Q,P,PQ) d<r+ I F(Q) • u^(Q,p,PQ) d«r\    (6.17) 

Observe that 3. is defined through (b) and (c) as the solution of a 

aeccnd boundary-value problem in D + B. Fnile the existence of S., and 

hence of S,1, is postulated, the uniqueness of these states is assured by 

Theorem 3»3 and the fact that (d) precludes an arbitrary additive rigid 

displacement field. The singularities inherent in S. and S , because of 

(6.llj), (U.18), and (5.Ill), constitute a self-equilibrated system j thus, 

the boundary condition (c) for S. conforms to Condition (d) of Theorem 

3.U, 'which is necessary for the existence of S. if D is bounded. 

In the proof of the theorem, consider first the case in which P = P . o 

Here, in view of (a), (b), SJ is regular throughout D + B and, by (c), 

(d), is the null-state. Since u(P ) is supposed to vanish, (6.17) clearly 

holds if P = P . o 

Now, let P ^ P , and let £(8), JT (8) be spheres of radius 8, 

lying wholly in D and having no points in common. The region j©  bounded 

by B, 2L(8), and £ $)»  is then a r6^121* region of space in which S(Q) 

and SJ(Q,P,P ) are regular. An application of the reciprocal theorem, 

Theorem 3.2, to S and S.  in c© , in view of (c), leads to, 
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I! 

j    I£  • u 
Jz 

do- + 
JZ. 

r ' 
•  • u do" = 1 T • u{ dcr +   j   ¥ • u.» d<r 

«- (6.18) 

+  I ¥ • u* dcr+       f • 5* dfi 
J^"~ Via 

Proceeding to the limit as    8 —*• 0    in (6.18), we find by means of Lemmas 

6.1, 6.2, Hypotheses  (a),   (b), and (U.18) that 

T{ • u   dcr-».ui(P), 

z 
I f»  * u   dcr -»• - u, (P) + R x a.   • o>(p ) = 0, i i i o 

T    • u« do~-^0, T • u' dcr-*. 0. 

• (6.1?) 

Equation (6.1?) now follows fras (6.18) and (6-19)-   This completes the 

proof.    The next- theorem aims at an integral representation for the strains 

of a regular state in terms of the associated surface tractions, which is 

analogous to the representation (6.17) for the displacement components. 

Theorem 6.2;    Let    S(Q)    be an isotropic state? corresponding to the body 

forces    F(Q), which is regular in   D + B.    Let   P    be a point of   D   and 

S.'J(Q,P)    be a state characterized by the properties t 

(a)    S£3(Q,P) = ^ [Sij(Q»p) + S3i(Q,P)] + S*j(Q,P>, (6.20) 

where S. .(Q,P) = - S. ^(Q>P) i£ the state corresponding to a force doublet 

with or without moment, applied at Pj 

Uo 

See Definition 5.2.    Recall that all differentiations are with re- 
spect to the coordinates    x.    of    P. 

HP 
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(b) S. .(Q,P) corresponds to |T(Q) = 0 and is an lsotropic regular 

state for Q in D + Bj 

(c) f;j(Q,P) a - | ['ij(Q»P) •*ji(Q»P)] +*£.,(Q,P) = °>     (6.21) 

in which T!., fH.,, fT j are the surface tractions on B of S!., S. ,, S,.., 

respectively* Then, 

Moreover, 

f f (P) =  f(Q) • u' (Q-P) d(T+ I ?(Q) • u;4(Q,P) d^. 
1 1J ) AJ J B Jf 

(6-22) 

(6.23) Sij(Q,P) = \ [S[#;)(Q,P,P0) - SjA(Q,P,P0)], 

where SJ(Q,P,P ) is defined as in Theorem 6.1. 

* ) i 
Note that S. . is uniquely defined  as the solution of a second 

boundary-value problem in D + B. By virtue of (5.?), (5.8), (5.9), the 

singularity of S.. + S.. at P is self-equilibratedj hence, the boundary 

condition (c) for S. . satisfies Requirement (d) of Theorem 3»li, which is 
# 

necessary foi the existence of S.., if 1) is bounded. 

We shall deduce the present theorem from Theorem 6.1. To this end, 

define a state S" (Q,P,P ) through 

s!^Vai^ + V' (6.2U) 

•where    SJ(Q,P,P )    is defined in Theorem 6.1.    If we compute the strains 

e..(P)    belonging to    S(Q)    of Theorem 6.1 from the displacements (6.17), 

with the aid of the strain-displacement relations (3.3), we obtain      (6.22) 

^ ithin an arbitrary additive rigid displacement field. 

U2i -It is not difficult to show that a single differentiation with respect 
to the coordinates   x^   of    P    of the improper volume integral in (6.17), 
may be performed under the integral sign.    The proof of this statement is 
strictly similar to the proof of Theorem II on p. 152 of V&\ 

'•ipqpinwqrawiiwM 
. 
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(6.25) 

with    u' (Q,P)    replaced by   u?4(Q»F*P.)«    It remains to be shown that 

S?i(Q,P,P )    coincides with the state    S.f,(Q,P)    of Theorem 6.2. 

Let 

S^(Q,P,P0) * \ [s^ • S^], 

sr(9,p,p0)*i [<)3 • s^j, 
-I ML 

5 (Q,P,P ) and S.(Q,P,P ) being the states defined in Theorem 6.1. Since 

S. 4(Q,P) * - S< ,(Q,P), it follows from (6.21*)-, (6.25), and (6.13) that 

S«j(Q,P,P0) = -|[sij(Q,P)+S.i(Q,P)] 

+ ^(Q,P,P0) +S^*(Q,P,PO). 

(6.26) 

ring (6;?6) -with (6.20), we note that S^(Q,P) = SJ1(Q,P,PQ) follows 

if we show that S^(Q;P,PQ) is the null-state and that S*(Q,P) = S^*(Q,P,P ) 

Indeed, an elementary computation, based on (6.11|), yields, 

So,j = <5J x \ ' *i)  Sk(Q'P) (6.27) 

whence    u    . + vr  . = 0    and thus, according to (6.25), S ^    is the null- o,j        o,i ' o 

state. 

"With a view toward verifying that S.(Q,P) S S. (Q,P,P ), observe that 

both states are regular in D + B and, by Theorem 3*3, must be identical -* 

if their surface tractions on B coincide. A direct computation, involving 

(3.7), (6.15), and (6.25), confirms that T (Q,P) = ~(Q,P,P ) on B, which 

completes ths proof of the theorem. 

U3 See Footnote No. Lil. 
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Lauricella £?J establishes (6.22) directly and then merely states the 

usual line-integral representation for the displacement field of S(Q) in 

terms of the components of strain. Love £2"J, art. 169, and Trefftz [l9"Jt 

p. 12li, present a rough sketch of the proof of Theorem 6.1. Both these 

avthors specify merely the stress-resultants of the singularity of 

SJ(Q,P,P ) at P j in view of our observations following Theorem 5.2, this 

is insufficient for a unique characterization of SJ. 

The formation of e..(P) from (6.22), at once leads to Betti's formula 

for the dilatation in terms of the surface tractions.   The singular states 

SJ and SJ. of Theorems 6.1 and 6.2 play a role which is analogous to that 

played by Green's function of the first kind in connection with the Sirichlet 

problem. Formulas (6.17) and (6.22) reduce the solution of the second 

boundary-value problem in a given region J) + B to the determination of 

the complementary states S. and S7.i appropriate to D + B. 

. 

k^See [2j, p. 23U. 
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7.  Limit-Definition of Concentrated Surface Loads 

We turn now to the definition through a limit process of the solution 

to problems involving concentrated surface loads and, without loss in 

generality, confine ourselves to the case in which the body forces are 

absent* 

f 1 
Theorem 7»lt Let D + B be a regular region of space and let -* Q-^f 

(ot= 1, 2, OS9N) be N distinct points on B* Let A if* (n *» 1, 2, ...) 

be N sequences of closed subregions of B ("load regions") such that 

•^« »  f°r all n and ot= 1, 2, ...N, is a regular surface containing 

^/Y i2. its interior, and o^ -t* 0 as n —»» co, where & is the maxi- 

mum diameter of A^ . 

Let JL\r (ot= 1, 2, ...N) be a set of vectors ("concentrated loads") 

and T    '(Q) be a sequence of functions ("replacement loadings") defined 

for Q on B and such that 

(1) f^(Q) = 0 for Q not in A^ (oC= 1, 2, ,..»)$ 

(2) I   f(n) dcr-#. I .  as n -* coj 
JA<»> 
x 

1 ! i, A s bounded as n -•• co, (3> W I"1 
ou 

Let S  (P) be a sequence of states with the properties; 

(a) S  (P) is regular and isotropic in D + B for F = Oj 

(b) f(n\(2) = f#(Q) * ?
Vn)(Q) for Q on B, with T#(Q) continuous 

on Bj 

(c) u^(P ) = S5(n)(P ) = 0, where P  is  point of D, 
o 0       —•——   O  ~ ' *     •— 

U2 
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Then S  (P), together with Ita first space-derivatives, as n —*. oo, 

is uniformly convergent in every closed subregion of D •»- B which does not 

contain any point Q . The limit state S(P) = lim S*n' (P) is independent 

of the particular choice of the sequences ./^i, '    and fv ' • Moreover, for 

P in D, the limit state S admits the representation t 

u±(P) = j f#(Q) • ^(Q,P,PQ) dcr+^E^. ^(Q^P,P0), 
'B 

.„<!>> = 
at rt 

B 

f#(Q) • ^j(Q,P) dcr + ^E^- u^CQ^P), 
at= 1 

^(P) = A8ijekk + 2/ae.j; 

(7.1) 

(7.2) 

(7.3) 

•where u.'(Q»P,F^) and uL(Q,P) are defined as in Theorems 6.1 and 6.2, 

respectively. 

Here f#(Q) are the distributed surface tractions prescribed in the 

concentrated-load problem under consideration. We proceed to the proof 

of the theorem. Applying Theorem 6.1 to the regular states S  (P), we 

have, 

N _. n 
4n)(p) - \(Q) -u£(Q,P,Po) dcr+\     f

(n)(Q) :uj(Q,P,Po) do- (7.1*) 

B IC^JA.M 

.(n) 

(7.5) 

for all P in D. Since u; (P) is continuous in D + B, 

lim 4n)(P) = vJn)(Q), 

where Q  is a point of B. Tfe assume henceforth that Q  is not in 

i Q | (oC= 1, 2, ...N). Then there exists II > 0 such that n > M im- 

(n) 
plies that Q  is not in .AA • For such a choice of n, the integrand 

of the second integral in (7.U) is a continuous function of P at P = y 
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and 
N       « 

U.      3^ ?(n)(Q)-u'(Q,P,Po) d<r 

Equations (7.U),  (7.5),  (7*6) assure that 

n 

N        P 
> ?<n)(Q)-q(Q,Q0,P0) d<r. 

(7.6) 

Ha 
P-^Q 

¥J-Q)  * uJ(Q,P,Pj ^ (7.7) 
b^B 

exists* 

By (7.1) and (7.U), 

,(n) 
N 

Ui     (P) " \W S 

^ 
*« 

?(n)(Q) • W(<3»p»p0) **" 
n) ^ ° 

-I. 
<*, 

' ui(QQ!,P,Pc) k 

(7-8^ 

in -which   u.(P)    is given by (7.1), and provided   n y If.    Furthermore. 

according te (7.1), (7*U),  (7.5),  (7.6),  (7.7),     lim     u. (P) B u.(Q0) 
p-*9o f   1 exists, and (7*8) remains valid for all   P   in   D + B,    but cot in   1<LJt 

(a- 1, 2,  ...N). 

Thus, for P In any closed subregicn E of D + B which does not 

contain any of the points Q > and for n > M, we may write, 

K7.9) 

r o 

5J«**P.P0) ' ?(n)(Q) d(T ^1 >. 

The second term in (7*9) tends to zero uniformly for   P    in   E   as   n -»» oo 

since   ^(Q^p*p0)    is bounded for   P   in   E, and in view of Hypothesis  (2). 

- i 
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Moreover, clearly, the integral in the first term of (7.9), for all P i*i 

E, is bounded by 

mx       k(Q,F,P0)-^<V,P0)| f , J4n)(Q)i d«> (7'10) 
QonAln) JA(n) 

which uniformly tends to zero by Hypothesis (3) and because UJ(Q,P-P ) is 

continuous with i >spect to Q for Q in .A^ and P in E if n > M, 

while 8Vn/ -» 0 as n -*• co. 

We have shown that u}n'(P) uniformly converges toward u.(P) of 

(7.1), for ? in E. To complete the proof of the theorem, we have yet to 

establish the uniform convergence of the strains ej. (P) toward ^^(P) 

of (7.2), as well as the uniform convergence in E of the first space- 

derivatives of u* '(P) and e. . (P); this, however, is accomplished by 

strictly analogous means. 

Theorem 7.1 is the counterpart, in connection with concentrated surface- 

loads ^ of Theorem U.2, which supplies the limit definition of internal con- 

centrated loads. It should be noted that while the existence of the sequence 

of approximating states S (P) in Theorem U.2 was demonstrated, the exist- 

ence of the approximating states S ' in Theorem 7.1 is postulated. 

Hypothesis (3) of the present theorem is analogous to Hypothesis (d) of 

Theorem U.2j it could easily be weakened and is implied by Hypothesis (2) 

in the event that the replacement loaaing on each load region constitutes 

a system of tractions which are parallel and of the same sense. Theorem 

7.1 is readily extended to the limit definition of the solution to a mixed 

boundary-value problem involving concentrated surface loads. 

Definition 7.1? The lj-.nit state S(F) of Theorem 7.1 is said to constitute 

the solution of the second boundary-value problem for the region D + B, 

"u. 

RBMWjpaPMQWKamM'' wv~. 
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characterized by the surface tractions T (Q), the concentrated loads Z 

applied at the points Q^ and by vanishing body forces* 

Theorem 7.2: The limit state S(P) of Theorem 7_.l has the prop art ice; 

(a) S(P) is a regular isotropic state, corresponding to vanishing 

body forces, in D + B, except for point-singularities at every point Q . 

for -which L.^ 0. 
 at 

(b) ?(Q) = T (Q)    at all regular points of    B    which are not in 

{Q<J (o('= 1»  2'   -"N)* 
(c) lim       I     f d(r= L    (ot= 1, 2,   ...N), where   2IJ&)    if the 

8 - o J^g, 
intersection with D + B of a sphere of radius 8, centered at Q^ the 

outer normal of y  being directed toward Q . 

(d) 7^J(P) = °(rrt ) ££ i\^-* 0, where r  is the distance from P 

Property (a) follows at once from Definitions 3.2, U.l, U.2, as well 

as from the fact that the sequence of regular, isotropic states S    of 

Theorem 7.1, together with its first space derivatives, converges uniformly 

in any closed subregion of D + B which contains no points in lQ.yj« 

Consider a regular point Q  of 8, which is not in -|Q I (ot= 1, 2, 

...N), and recall that the maximum diameter o^   of the load region J\.      , 
o(» oc 

in Theorem 7.1,  tends to zero as    n -»• oc.    By Hypotheses  (1) and (b)  of 

Theorem 7«1» Property (a)  in the present theorem, and since    S      (Q ) -*» S(Q ) 
o o 

as    n -+• co, given     € >  0, there exists   M  > 0    such that    n > 14 implies 

T(n)(Q0) =f#(QQ), |f(n)(Q0) - f(Q0)|   <   €, 

which confirms Property (b)  of the limit-state. 
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Let    ]T (S), in the statement  of Property (c),  contain no points in 

<Q \ (a&= 1,  2,   ...N)c     It follows from the uniform convergence of    S      (P) 

toward    S(P)    in every closed subregion of    D + B   which excludes the set 

that 

Jf do-= lim    T(n) 

_ J^_    n -»• oo 
do- -     lim 

n -*• co 
f(n) dcr. (7.11) 

"E oC 

l\\ u_     4.V-. Next,  let    fi-Av)    be tne intersection with    B    of the solid sphere 

of radius    6,  centered at    Q.  .    Choose    £    small enough so that    Tfl   con- 
es, GO 

tains no member of the set    \Qn\ (0 = 1>  2,   ...N)    for which    ft ^ <&.   Since 

(n) S  (P) satisfies the homogeneous equilibrium equations in D + B, and 

from Hypothesis (b) of Theorem 7 •!» we have 

(jW do- = t(n) dcr 

•oL, 
TT 

T^do- 

oC TT (X. 

• f ?(n)d«r, (7.12) 

for all n sufficiently large to insure that A\ ' is wholly contained (n) 

in   TTJ$)>    Hypothesis (2)  and  (7.12) yield, 

lim T^  do-=   I   f# do- + 
n -*• co Js— J—. 

/t_o6 "ot, 

which, together with (7,11), implies 

'at 

JoC> (7.13) 

.  lim 

Thus Property (c)  is verified. 

f T der = I 

Zi«) 
OC" (7.11*) 

_o 
According to Theorem 6,2 and Equations (5.5), (5.6), uJ . = OCr-4") as 

r -*• 0, if r is the distance from Q to P. Hence, Property (d) follows 

directly from (7.2) and (3*6)  This completes the proof of Theorem 7 .2, 

which is the analogue of Theorem JuU. 

,..:__. 
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Let   A ••X dcr   be the area of   ^T* >   Then Property (c) in 

Theorem 7.2 implies 

Urn   $~2A (8)  >   0, (7.15) 

unless Ew=0. Condition (7.15) is certainly met if the load point (3. 

is a regular point of B. This condition need not be satisfied, however, 

in case G_ lies on a singular edge or on a corner of B. To illustrate 

this eventuality, let Q . be the origin and let B, in a neighborhood of 
Ob 

Q^. be a surface of revolution whose axis is the x -axis. Thus, let B 
05 3 

locally admit the representation, 

p = f (x^) for 0 * x rf a, (7.16) 

1/2 2   2 ' 
where « = (xr + x.)  , f(x.J is continuously differentiable in 

0 ^ x- ^ a, f(0) = f »(0) = 0, and 

ficiently small o   we have here, 

0 ^ x- ^ a, f(0) = f »(Q) = 0, and f (xj > 0 in 0 < x ^ a. For suf- 

A^o) = 2*8(5 - x3), (7.17) 

and a trivial computation yields, 

lim 8~V(8) = 0. (7.18) 

In the sense of the foregoing observation, the body is "incapable of sup- 

porting a concentrated load" at the point Q  under consideration. 

It will become apparent in the following section that Properties (a), 

(b), (c), and (d) in Theorem 7«2 uniquely characterize the limit-state 

S(P) of Theorem 7.1-• Or the other hand, as pointed out in the Introduction 

and diimonstr: *'-d in [V|, there exist "pseudo-solutions" of concentrated-load 

n^mammmmm 
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problems which possess Properties (a), (b), and (c), ?rithout being identical 

with the limit-state S(P), defined in Theorem 7.1. Thus, the traditional 

formulation of concsntrated-load problems in terms of Properties (a), (b), 

and (c), is incomplete. Moreover, any expectation, based on an appeal to 

Saint-Venant's principle, that pseudo-solutions represent useful approxi- 

mations to S(P), is unfounded, as was shown in £l]« This observation is 

not in conflict with a rigorous formulation of the principle [^21], [22]. 

mm mmrm*iggmmm*M**!t t^iaww L"'IM!^y.^*P>|WgM> 



8.  Extension of the Uniqueness Theorem to Concentrated Loads 

In this section we state and prove a uniqueness theorem appropriate to 

problems involving internal concentrated loads as well as concentrated sur- 

face loads. 

Theorem 8.1: Let D + B be a regular region of space. Let B  and B. 

be subregions of B such that B„ + B+ = B. Let -|Q . \   (ct= 1, 2, ...N) 

be a set of N distinct points such that each Q  lies either in D or 

in the Interior of B. . Let ]>T (S) be the intersection with D + B of 

a sphere -with radius 8, centered at (2^, the outer normal of ^"  being 

directed toward Q^. 
———— ———— CL 

Let S and S1 be two states with the following properties: 

(a) S and S1 are (not necessarily isotropic) regular states in 

D + B, corresponding to the same body-force field, except possibly for 

point singularities at Q .(ot= 1, 2, «..W): 

(b) u« = un on B , T1 = f" at all regular points of B+ at which 

S and S1 are non-singularj 

(c) lim I   f' dcr=  lim     f" do-; (8.1) 

(d)" 7jj(*) - O(r^) and T^P) = 0(r^2) as r^^. 0, where r^ 

is the distance from P to '<£ 

Then ^.(P) = ^^(P) for all P in D + B and not in |Q I 

(<£ = 1, 2, ...N). 

We note that Theorem 8.1 reduces to the classical uniqueness theorem, 

Theorem 3»3> in case S and S1 are free from singularities in D + B. 

To prove the theorem, consider the state 

S(P) = S'(P) - S»(F). (8 = 2) 

In view of Hypotheses (a), (b), (c), and (d), S(P) has the properties: 

50 
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(A) S(P)    is regular in    D + B, corresponding to    f(T) - 0, with the 

possible exception of point singularities at    Q    (c£ = 1,  2,   ...N); 
OM 

(B) .u = 0    on    B      and   T = 0    at all regular points of    B      at which 

S    is non-singular} 

(C) lim   \        f do-=0    (ot= 1, 2,  ...N)j (8.3) 
8^oJZi8) 

(D) ^j(P) = 0(r^    as    r^— 0. 

Evidently, there sxLsts 8 > 0 such that 0 < o < 6  implies: 

(at) no two members of the set of solid spheres 0 - r^—  o (c6= 1, 

2, ...N) intersectj 

(fl) if Q  is in D, the solid sphere 0 -= r-y- *» does not inter- 

sect Bj 

(y) if Q  is on B., the solid sphere 0 ^ r_y- ° intersects 

neither B  nor any edge or vertex of B. which does not contain Q^ 

and the intersection of ^jT (8) with B.  is a closed regular curve. 

Figure 1 shows a schematic diagram of D + B together with the points 

Q  and the associated spherical surfaces T~_(0)« I*t J© (8) + (B(°) be 

the closed region, with the boundary |B(o), consisting of all points in 

D + B and not in 0 -? r  < 8 (ot= 1, 2, „o.N). By (d), (p), and (y), 

o© (8) + (B(8) is a regular subregion4'7 of D + B, in which S(?); ac- 

cording to (A), is regularo We may, therefore, apply the energy formula 

(3.10) to S(P) in 3  + 6, and, by /irtue of (A), (B), (O_), (fi), (y), 

obtain, 

See the definition of a "regular region of space1* given in Section 2, 
Conditions (ex.), (p), and (y) assure that  fc)(S) consists of a finite num- 
ber of non-intersecting closed regular surfaces. 

1 \ 

, ijyaTffWSilWi^i*'' -     -?iw<g»w8aw!»rg»ri- i...»«uii—«i— , at„.i.__.»w»B_«.«ppgg-ww|iW--W^^ "-ww ,  '--. —-•»— » 
--•••"i  ^_-_-   ' — — — •     •   «£1... .        ____........._. 
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N 

JB(S) 
ud^X u d<r= 2 

Snrt^S) 
W d7^. 

(o < S < 8 ). 

f (8.U) 

Furthermore, the intersection of 0< a^r.<S<b  with D + B« 

for every fixed o^ is also a regular region of space in which S(P), in 

view of (A), satisfies the homogeneous equilibrium conditions. This ob- 

servation, together with (B), (C), (ct), (B), and (y), yields, 

I   f dcr= 0 for 0 < %   < S  (cC= 1, 2, . ..N). (8.5) 

To establish the theorem, we need to show that    T*. . (P) = 0    for every 

P    in    D    and not in    «Q   I (at= 1,  2,   ...N).    To this end it suffices to 

show that 

iim 
o— 0 

(8.6) W d/ = 0, 

since    W   is a positive definite function of the components of stress.    Thus, 

we need to prove that the improper strain-energy integral     I W d1/    is con- 

vergent and has the value zero. 

We turn to the proof of (8.6).    According to (8.U), we merely have to 

demonstrate that given      £ > 0, there exists    o_  >   0    such that 

0 <   0   < o,    implies, 

< €•    (no summaticn) Ti u^ der 

(ot= 1,  2,   .„.N) 

•     (8.7) 

^^^^k'Ssaa^e^SBBSS^L X^mrWH***} >7> TC • *Vl»5*-.5W> «'*•-•« i^-PMMoncrra ^aF^^gfJ^t^W^a-^.^r-xini mi  IIK 
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For convenience, we shall henceforth write ^(b), T, and u, in place of 

21 J&), T.j and u., respectively. Thus, examine the integral, 

K&) = \    T(Q,8) U(Q,8) do-   (0 < 8 < 8o), 

where    Q   is a point on   £(8)    and, from (8.5), 

(8.8) 

L (8.9) T(Q,8) dcr= 0 (0  <   8  <   §o). 

Let   £^(8)    and   £^(8)    be the subsets of    £(&*)    which are 

characterized by the requirements, 

1 
(8.10) 

T(Q,8) ^0    for    Q    in   £(2)(o). 

T(Q,8) ^ 0    for    Q    in    £(1)(8), 

Then, 

Tu dxr = 

Z$) 
Tu dcr + Tu dcr, 

5^>(S)       Jx(2)(^) 
(8.11) 

and, by (8.9), 

JT do-= -   I dcr. 
j;(i)(8) J^-(2), 

(8.12) 

'X^(S) 
Equations  (8.10),   (8.11), and  (8.12),  in conjunction with the generalized 

first mean-value theorem for surface integrals,  assure the existence of 

two points    Q-j(S)    and    Q2(o)    in    y(o),  such that 

1(8) I £  |u(Q.,S) -u(Q ,8)1   I T(Q,8) 
11 ^^(8) 

do- 

(o< 8 < S ). 

(8.13) 

«,»I|»|H       '   !SU^^t>a3C.I,l|LI.HillW,,J^.'« 
*r.  .„ 
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By (D), there exist U > u, o2 > 0 (S. < 8^), such that 

jT(Q,8) 1 < M/82 for 0 < 8 < 82 and all Q in £(8). Hence, 

T(Q,8) dcr < Wll. (8,1U) 

Moreover, by (A), u(Q,8)    is continuous on   ^£(o,x     so that,  given      £ > 0, 

there exists    8, >    0 (6,   <    Op)    such that    0 <   o  <  <L    implies, 

^((^,8) -u(Q2,S)|    <   £/W«. (8.15) 

Equations  (8.13),   (8.11;),  and (8.15) yield 

I(o)    < £     if   0 < % < %1$ (8.16) 

•which completes the proof of the theorem. 

Theorem 8.1 is readily extended to mixed-mixed boundary-value problems, 

as well as to the case in which the boundary B, assumed to be suitably 

smooth, extends to infinity. The theorem confirms, in particular, that 

Properties (a), (b), (c) in Theorem U.ii and Properties (a), (b), (c), (d) 

in Theorem 7*2, uniquely characterize the Kelvin-state and the limit-state 

of Theorem 7.1, respectively. On the basis of the present generalized 

uniqueness theorem, we arrive at the follorfirg unique formulation of mixed 

boundary-value problems, involving internal concentrated loads as we?J. as 

concentrated surface loads: 

Let D + B, Bu, Bt, JQ^J, r^, and £^8) (c6= 1, 2, ...N) be defined 

as in Theorem 8.1. Given f^(P) for P in D, u#(Q) for Q on B , 

TMXQ) for Q on B. , L" (aL= 1, 2, ...N), and the elastic constants 

c. . , find a state S(P) with the properties^ 
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(a) S(P) is regular in D + B, corresponding to fs F , except for 

point singularities at each    Q .^ for which    T,   / 0. 

(a) u = u# on B and T = T# at all regular points of B. which 

are not in   JQ .1. 

lim    I (c)        lim    |        Td<r=E    (ct= 1,  2,   ...N) 

(d)    7jj(P) = 0(r£)    as    r^O. 

Necessary conditions for the existence of the solution to the foregoing 

problem, analogous to Conditions  (a),  (b),   (c),   (d)  of Theorem 3»U> are im- 

mediate and need not be listed here explicitly..    To these we add Condition 

(7.1?)- 

The significance of this alternative formulation of concentrated-load 

problems, which derives its physical motivation from the limit-definitions 

contained in Theorems Lull and 7<>1» was discussed in the Introduction to 

the present paper. 

•,»••«»»•»—IHIIII—iIJI lim • > qiWtWP mi    -*•*• J-~—»-•»«•-• — am 
' -~—*n "  " .  

•  .   •   \r   - 



9.  Concluding Remarks 

As emphasized in the discussion following Theorem 3«U, not only con- 

centrated loads but also most instances of discontinuous distributed 

loadings, are beyond the range of validity of the classical uniqueness 

theorem, Theorem 3*2. The traditional formulation of problems character- 

ized by discontinuous distributed surface tractions is, in general, not 

unique, which fact was illustrated in Section 3« 

A natural and unique definition of the solution to the second boundary- 

value problem for an isotropic mediom, in the presence of merely piecewise 

continuous surface tractions, may be based on the Lauricella-Volterra for- 

mulas which were deduced in Section 6 on the assumption that S(P) is 

regular in D + B. Thus, we may use (6.17) and (6.22) to define the dis- 

placement and strain field of the solution, although t"(Q) are here no 

longer the surface tractions of a regular state."*" 

Such a formal definition of the soluti en to a problem characterized 

by piecewise continuous surface tractions does not, however, satisfactorily 

dispose of the uniqueness questiorts here involved. First, from the view- 

point of applications, it is analytically awkward to be limited to a for- 

mulation of the problem which is tied to a particular integral representa- 

tion of the solution. Second, any specific application of the foregoing 

definition presupposes an explicit knowledge of the states S? and St1., 

defined in Theorems 6.1 and 6.2* this, in turn, necessitates the solution 

of two usually highly complicated boundary-value problems. 

Analogously, but for lack of motivation, we could have directly 
adopted (7.1), (7.2), and (7.3) as a definition of the solution to the 
second boundary-value problem in the presence of concentrated loads. 
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A possible program to be pursued in connection with the class of prob- 

lems under consideration, consists in first adopting (6.17), (6*22) as a 

definition of the solution; one may then study the properties of the so- 

lution so defined — in particular, the character of the singularities 

present — with a view toward reaching an extension of the classical unique- 

ness theorem, analogous to Theorem 8.1 for concentrated loads. Such a 

generalization of the uniqueness theorem would give rise to a practically 

useful alternative formulation of the problen in terms of intrinsic proper- 

ties of the solution. This task is, however, beyond the scope of the 

present paper. Similarly, uniqueness questions related to geometrically 

induced singularities, are in need of further attention. 



Figure   I 
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